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Abstract: Inorganic chemistry laboratories act as core facilities for inorganic material synthesis,
elemental analysis, and chemical reaction research. Nevertheless, the widespread use of reactive
inorganic reagents (e.g., strong oxidants, reducing agents, heavy metal salts), corrosive substances,
and high-temperature/pressure experimental processes often results in safety accidents including
chemical reactions out of control, reagent splashes, toxic gas emissions, and equipment corrosion.
Conventional monitoring systems, reliant on manual inspections and single-sensor alarms, suffer
from detection delays, high false alarm rates, and inadequate emergency response. To address this,
this paper proposes an intelligent safety monitoring and emergency decision-making system based
on multimodal deep learning. It integrates visual imagery with multidimensional sensor data
(temperature, humidity, toxic inorganic gas concentration, corrosive gas partial pressure, heavy metal
ion concentration) to construct an enhanced YOLOV8-CBAM object detection model and a
bidirectional long short-term memory (BiLSTM) temporal prediction model. Attention mechanisms
enable multimodal data fusion, culminating in an emergency decision module designed through rule-
based and case-based reasoning. Experimental results demonstrate that the enhanced YOLOVS-
CBAM model achieves a 96.8% mAP@0.5 for detecting reaction flaring, corrosive splashing, toxic
smoke, and non-compliant operations, representing a 3.2% improvement over the original YOLOVS.
The BILSTM model achieved a low MAE of 0.023 for sensor data prediction, outperforming
traditional LSTM; post-multimodal fusion, safety state classification accuracy reached 98.2%, with
the system's average emergency response time controlled within 12 seconds. This effectively
enhances laboratory safety prevention and emergency response capabilities.

1. Introduction

With the continuous deepening of research in fields such as inorganic material preparation,
coordination chemistry, and industrial catalysis, the safety management of inorganic chemistry
laboratories confronts severe challenges. These laboratories involve a large number of reactive
inorganic compounds, corrosive reagents (e.g., concentrated sulfuric acid, hydrofluoric acid), high-
temperature heating equipment, and gas cylinder storage, featuring prominent risks such as sudden
chemical reactions, toxic heavy metal pollution, and pressure vessel hazards, along with complex and
variable experimental processes and frequent personnel flow. Traditional safety management models
reliant on manual inspections and single-sensor monitoring struggle to meet demands for real-time risk
perception and rapid emergency responsel’l. In recent years, breakthroughs in multimodal deep
learning technology have provided novel theoretical frameworks and technical pathways to address
this challenge. By integrating heterogeneous data from multiple sources—including visual, infrared,
gas sensing, and equipment logs—this technology enables comprehensive intelligent perception of
laboratory environments, personnel behaviour, equipment status, and chemical storage. It has
demonstrated significant advantages in fields such as biomedical diagnostics and chemical safety
monitoring. However, existing research mainly concentrates on industrial production environments or
single-modality monitoring analysis. There is a lack of systematic exploration of multi-modal
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collaborative monitoring and intelligent decision-making mechanisms suitable for the specific
scenarios of inorganic chemistry laboratories (e.g., special risks such as anhydrous reaction systems,
metal hydride storage, and fluoride-containing waste treatment)!?. Concurrently, laboratory safety
management is undergoing a transformation from reactive post-incident handling to proactive early
warning, and from experience-driven to data-driven intelligencel®. There is an urgent need to develop
intelligent systems capable of autonomously analysing potential risks, predicting accident progression
trends, and generating optimal emergency response decisions. Consequently, developing a multimodal
deep learning-based intelligent safety monitoring and emergency decision-making system for
inorganic chemistry laboratories addresses pressing practical challenges: low maturity in research
laboratory safety management and the absence of comparable commercial solutions. This initiative
also represents a crucial step towards deepening the integration of artificial intelligence within material
sciences, safeguarding researchers' lives, and ensuring the stable output of scientific research. It holds
significant theoretical innovation value and broad application prospects*.

2. System Architecture

2.1 Design of a Five-Layer Architecture for Safety Monitoring and Emergency Decision-
Making Systems in Inorganic Chemistry Laboratories

This paper's proposed intelligent safety monitoring and emergency decision-making system adopts
a layered architecture design. Through vertical coordination across the perception layer, data pre-
processing layer, multimodal modelling layer, emergency decision-making layer, and application
layer, it establishes a complete closed-loop system spanning from data acquisition to intelligent
decision-making. The perception layer deploys high-definition network camerasP® (4 megapixel
resolution, 25fps frame rate) alongside multi-parameter sensors (temperature and humidity range: -
40to 85° C/0to 100% RH; toxic inorganic gas detection range: 0 to 100ppm; corrosive gas partial
pressure range: 0-5kPa; heavy metal ion concentration detection range: 0-10ppm), enabling
synchronous collection of visual imagery and environmental parameters (1Hz sampling frequency)
from critical laboratory areas such as reagent cabinets (for strong oxidants/reducing agents), acid-
resistant workbenches, and gas cylinder cabinets. This establishes a foundation of multi-source,
heterogeneous data for subsequent analysis. The data preprocessing layer employs dedicated modules
for each heterogeneous data type: image data undergoes Gaussian filtering for denoising,
normalisation, random flipping, and brightness adjustment to enhance model robustness; sensor time-
series data adopts a 3 0 rule to eliminate outliers, with moving average filtering smoothing transient
fluctuations—especially for sudden changes in parameters such as toxic heavy metal ion
concentration and corrosive gas partial pressure—to extract valid features, ensuring input data quality
and consistency. The multimodal model layer, serving as the core analytical engine, integrates an
enhanced YOLOv8-CBAM model with a BiILSTM model!®l. The former incorporates convolutional
block attention mechanisms to strengthen visual feature capture for dangerous phenomena such as
reaction flaring, corrosive reagent splashing, and toxic smoke emission, as well as visual
identification of non-compliant operations including failure to wear acid-resistant gloves, improper
handling of gas cylinders, and unauthorized modification of reaction conditions. The latter leverages
bidirectional long short-term memory networks to uncover temporal dependencies in sensor
parameters, predicting environmental state evolution. Ultimately, an attention fusion module
dynamically weights and integrates visual and sensor features, outputting a three-tier classification of
laboratory safety status: normal, warning, or hazardous. Emergency Decision Layer This layer
establishes an intelligent decision mechanism through a rule-based inference engine and historical
case repository. It automatically triggers predefined emergency response protocols (e.g., initiating
acid-resistant ventilation during corrosive reagent leakage) based on the model's safety classification,
while matching optimal mitigation strategies. This achieves an automated transition from incident
detection to decision generation. The application layer provides end-users with diverse interactive
interfaces. Monitoring terminals display real-time panoramic surveillance views and parameter
curves, while audible and visual alarms deliver instant local warnings. Mobile applications push
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anomaly notifications to management personnel. Concurrently, device control interfaces enable
remote interlocking control of actuators such as acid-resistant fume cupboards and fire suppression
systems. This collectively forms an intelligent safety management system encompassing the entire
‘perception-analysis-decision-action’ process!’\.

2.2 Key Technology Pathways

The system implementation relies on the synergistic innovation of three core technological
pathways. Firstly, addressing the heterogeneity of visual and sensor data in sampling frequency and
semantic granularity, a time-stamp-based precise alignment mechanism achieves multimodal data
synchronisation. This spatially and temporally registers a 25fps image frame stream (one frame every
0.04 seconds) with 1Hz sensor temporal data. Interpolation-based synchronisation and buffer queue
management ensure temporal and spatial consistency and correlation across modalities, establishing
the foundational data for subsequent fusion analysis. Secondly, addressing dual constraints of
resource-constrained laboratory edge devices and real-time responsiveness, Tensor RT is employed
for lightweight deployment of trained deep learning models through graph optimisation, layer fusion,
and accuracy calibration. This significantly reduces model inference latency and memory
consumption, enabling millisecond-level detection on edge computing platforms such as NVIDIA
Jetson AGX to ensure monitoring system timeliness. Finally, an emergency decision-making closed-
loop mechanism was established, integrating the entire automated workflow from multimodal hazard
identification and risk grading to equipment interlock control and alarm notification dissemination.
This enables end-to-end emergency response, effectively reducing human decision-making delays
while enhancing proactive and intelligent laboratory safety management!®). These three interlinked
technical pathways collectively underpin the system's reliable operation within complex experimental
environments.

3. Multimodal Deep Learning Model Construction
3.1 Visual Inspection Model: Enhanced YOLOvV8 - CBAM

To address the issues of insufficient detection accuracy for small objects and high false positive
rates caused by complex background interference in laboratory settings, this paper proposes structural
enhancements to the YOLOvV8 model. While the original YOLOvS model demonstrates excellent
performance in general object detection tasks, leveraging the CSPDarknet53 backbone and PANet
feature fusion architecture, it exhibits weaknesses in extracting features from small targets—such as
3 -8 cm corrosive reagent spill traces—within inorganic chemistry laboratory environments.
Furthermore, it is susceptible to interference from complex background noise, including reagent
labels and instrument reflections. To address this, this study integrates a Convolutional Block
Attention Module (CBAM) after the PANet feature fusion layer within the model's Neck network.
This enhances the model's ability to focus on key target regions. CBAM achieves adaptive feature
optimisation through a cascaded mechanism of channel attention and spatial attention: channel
attention employs global average pooling and max pooling to reduce spatial dimensions, generating
channel weights via a two-layer fully connected network. The formula is as follows:

M.(F) =0 (MLP(Angool(F)) + MLP(MaxPool(F))) (1)

Where o denotes the sigmoid function and F represents the input feature map; spatial attention
employs average pooling and max pooling concatenation along the channel dimension, with spatial
weights output via a convolutional layer, formulated as:

M (F") = o(Conv([AvgPool(F"); MaxPool(F")]) (2)

This enhancement effectively improves the distinction between target features and complex
backgrounds by inserting the CBAM module after feature fusion at each layer of PANet. Model
training employs a strategy combining a proprietary dataset with publicly available data: 8,000
laboratory scene images were collected (including 2,000 images of reaction flaring/corrosive splashing,
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1,500 images of toxic smoke from inorganic reactions, 2,500 images of non-compliant operations such
as improper gas cylinder handling and lack of acid-resistant protection, and 2,000 normal scene
images), supplemented by 5,000 images from the FIRE-SMOKE-DATASET public dataset and 3,000
images from the inorganic chemical safety accident dataset. After annotation, these were partitioned
into training, validation, and test sets in an 8:1:1 ratio. The training environment was configured with
an NVIDIA RTX 4090 GPU. The PyTorch 2.1 framework was employed, with the AdamW optimiser
selected. The initial learning rate was set to 0.001 and dynamically adjusted using a cosine annealing
strategy. A batch size of 16 was used, with 100 training iterations to ensure sufficient model
convergence!.

3.2 Sensor Sequence Prediction Model: BiLSTM

Given the inherent strong temporal correlation and non-linear dynamic evolution characteristics
of laboratory sensor data (such as toxic inorganic gas concentrations, corrosive gas partial pressure,
temperature and humidity), this paper employs a bidirectional long short-term memory network
(BiILSTM) to construct a time series prediction model. Compared to traditional LSTMs, which can
only capture the temporal dependence of historical data on the current state through a single forward
pass, the BILSTM simultaneously extracts bidirectional contextual information from past and future
time points via parallel stacked forward and backward LSTM units. This effectively handles complex
evolution patterns—such as those observed in hydrofluoric acid leakage scenarios where
concentrations rise slowly before declining under acid-resistant ventilation intervention—
significantly enhancing prediction accuracy. The model adopts a three-layer architecture: the input
layer reconstructs pre-processed sensor data into feature vectors via time windows, selecting the
preceding 10 seconds of historical data to predict the subsequent 5 seconds, forming an input tensor
of dimensions [batch size, 10, 5] (where 5 corresponds to feature dimensions such as temperature,
humidity, toxic inorganic gas concentration (e.g., chlorine, ammonia), corrosive gas partial pressure,
and heavy metal ion concentration); The hidden layer employs a two-layer BiLSTM structure, each
with 128 hidden units and a tanh activation function, incorporating dropout regularisation with a
coefficient of 0.2 to mitigate overfitting. The output layer maps through a fully connected layer to
generate predictions of dimension [batch size, 5, 5], enabling simultaneous multi-parameter
forecasting. The training dataset was constructed by collecting data from typical laboratory scenarios,
including simulated leaks of corrosive reagents (e.g., hydrofluoric acid), uncontrolled exothermic
reactions of inorganic compounds, abnormal gas cylinder pressure, heavy metal solution spills, and
normal operations. It comprises 100,000 high-fidelity time-series data samples, partitioned into
training, validation, and test sets at a ratio of 7:2:1. Mean squared error (MSE) is employed as the
loss function to optimise prediction bias, ensuring the model's precise capture of dynamic
environmental changes!'?!.

3.3 Multimodal Fusion Module: Attention Fusion

The core of multimodal fusion lies in achieving adaptive weight allocation and deep collaborative
representation of heterogeneous information. This paper designs a dynamic fusion strategy based on
attention mechanisms to fully exploit the complementarity between visual and sensor modalities.
Specifically, the fusion module first extracts features separately from the improved YOLOv8-CBAM
model and the BILSTM model. The object detection confidence vectors output by the former are
encoded as visual features represented as:

V € R3 (3)

Simultaneously, the sensor parameter prediction error vector generated by the latter is abstracted
into a sensor feature representation as follows:

S € R¥3 4)

Subsequently, the correlation between bimodal features is modelled via the learnable attention
weight matrix W. The Softmax function is employed to normalise and compute the contribution
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weights for each modality. The visual modality weight is defined as:

exp(V-W)
exp(V-W)+exp(S-W)

(5)

The sensor mode weight is defined as Ws = 7 — Wv. This mechanism enables adaptive optimisation
of weight distribution during training, thereby amplifying the decision-making influence of critical
modes. Ultimately, the fused feature vector F is obtained through weighted summation: F = Wy -V
+ Ws -S. This achieves the organic integration of visual semantic information with sensor temporal
information, providing a unified representation for subsequent emergency decision-making layers
that combines global perception with fine-grained predictive capabilities.

WV =

4. Experimental Results and Analysis
4.1 Experimental Datasets and Evaluation Metrics

To comprehensively evaluate system performance, this paper constructs an experimental dataset
encompassing visual and sensor modalities and establishes a multidimensional evaluation metric
system. The visual dataset comprises 13,000 high-definition laboratory images at 19201080
resolution, meticulously annotated using Labellmg. Target categories include ‘reaction flaring’,
‘corrosive reagent splashing’, ‘toxic inorganic smoke’, ‘non-compliance with acid-resistant gloves’,
and ‘improper gas cylinder operation’. This ensures diversity and realism in the training samples. The
sensor dataset generates 100,000 time-series samples by simulating four typical scenarios: normal
operation, leakage of corrosive/inorganic toxic reagents, uncontrolled exothermic reactions, and
abnormal gas cylinder pressure. Key parameters—including temperature, humidity, toxic inorganic
gas concentration, corrosive gas partial pressure, and heavy metal ion concentration—are recorded at
a 1Hz sampling rate, comprehensively capturing environmental response patterns across varying risk
levels. Regarding evaluation metrics, the visual detection model employs Precision, Recall, and
mAP@0.5 to comprehensively assess target localisation and classification accuracy. The time-series
prediction model utilises Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to
quantify sensor parameter prediction deviations. The multimodal fusion module evaluates overall
decision-making performance through safety state classification accuracy and F1 scores, establishing
a comprehensive assessment framework spanning from single-modal analysis to cross-modal fusion.

4.2 Clinical significance

To validate the effectiveness of the improved YOLOv8-CBAM model, comparative experiments
were conducted, with results presented in Table 1. Compared to both YOLOvV7 and the original
YOLOV8 model, the proposed method achieves significant enhancements in detection accuracy and
robustness, with mAP@0.5 reaching 96.8%, 93.6%, and 91.7% respectively, representing a 3.2
percentage point improvement over YOLOvV8 and a 5.1 percentage point gain over YOLOV7. Precision
and recall were simultaneously optimised to 95.8% and 94.3%. This performance gain primarily stems
from the CBAM attention mechanism's reinforcement of feature fusion in the neck network, markedly
enhancing the ability to focus on small targets such as 5cm-scale corrosive reagent leakage traces.
Detection recall for such targets surged from 82% in the original model to 93%, effectively reducing
false positives and false negatives caused by reagent label interference and instrument reflections in
complex backgrounds. Although increased model complexity resulted in a 4fps reduction in inference
speed compared to YOLOvV8 (41fps), this still substantially exceeds the real-time monitoring
benchmark threshold (=25fps), meeting system real-time requirements. The improved model clearly
and accurately identifies non-compliant operational behaviours such as reaction flaring, corrosive
splashing, and improper gas cylinder handling, providing highly reliable visual-semantic input for
subsequent multimodal fusion decision-making.
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Tablel Visual Inspection Model Results

Model Precision (%) | Recall (%) | mMAP@0.5 (%) | Inference Speed (fps)
YOLOv7 89.2 87.5 91.7 32
YOLOv8 925 91.8 93.6 45

YOLOvV8-CBAM (QOurs) 95.8 94.3 96.8 41

4.3 Time Series Forecasting Model Results

As shown in Table 2, the BILSTM time series prediction model proposed in this paper significantly
outperforms the GRU and LSTM baseline models across all performance metrics. Specifically,
BiLSTM reduces MAE to 0.023 for temperature and humidity prediction, achieves MAE of 0.020 for
toxic inorganic gas concentration prediction, and attains RMSE of 0.031 for heavy metal ion
concentration prediction. Notably, the toxic inorganic gas prediction MAE decreases by 35.5%
compared to LSTM and by 47.4% compared to GRU, fully validating the modelling advantages of the
bidirectional temporal feature capture mechanism for complex dynamic environments. Although
increased model complexity extended training time to 3.5 hours, a slight increase compared to the 2.8
hours for LSTM and 2.1 hours for GRU, this trade-off yielded comprehensive improvements in
prediction accuracy. This demonstrates that BiLSTM, by concurrently mining historical and future
bidirectional contextual information, can effectively capture non-linear evolutionary patterns such as
the gradual rise in concentration during the early stages of hydrofluoric acid leakage and the
subsequent decline following acid-resistant ventilation intervention. This provides more reliable
temporal prediction foundations for subsequent multimodal fusion decision-making.

Table2 Comparative Experimental Results of Bilstm Versus Lstm and Gru

Model MAE (Temperature & | MAE (Toxic | RMSE (Liquid | Training Time
Humidity) Gas) Level) (h)
GRU 0.045 0.038 0.052 2.1
LSTM 0.035 0.031 0.043 2.8
BiLSTM (Qurs) 0.023 0.020 0.031 3.5

4.4 Multimodal fusion results

As shown in Table 3, the attention fusion strategy proposed in this paper significantly outperforms
single-modal approaches in safety state classification performance. Specifically, the model relying
solely on visual information achieves an accuracy of 93.7%, an F1 score of 92.5%, with false alarm
and false negative rates of 4.8% and 5.2% respectively. The model relying solely on sensor data
achieves an accuracy of 92.1%, an F1 score of 91.3%, with false alarm and false negative rates of 6.2%
and 6.8% respectively, both exhibiting relatively high risks of misclassification. In contrast, the
proposed attention fusion mechanism achieves cross-modal information complementarity through
dynamic weight allocation. This elevates classification accuracy to 98.2% —a maximum 4.5
percentage point improvement over single-modal approaches — with an F1 score of 97.8%.
Concurrently, false alarm and false negative rates are significantly reduced to 1.2% and 1.5%
respectively. This performance improvement stems from the complementary strengths of multimodal
data: the visual modality effectively eliminates sensor misclassifications of non-hazardous aerosols
like laboratory dust, while the sensor modality avoids visual misdetections of colour-interfering
substances such as coloured inorganic reagents. This significantly enhances the system's robustness
and decision reliability in complex environments.

Table 3 Comparative Experimental Results of BILSTM versus LSTM and GRU

Fusion Method Accuracy F1 Score False Positive Rate Miss Rate
(%) (%) (%) (%)
Vision Only 93.7 92.5 4.8 5.2
Sensor Only 92.1 91.3 6.2 6.8
Attention Fusion (Ours) 98.2 97.8 1.2 1.5
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5. System test results

To systematically validate the effectiveness and robustness of the proposed intelligent safety
monitoring system, this paper selected a 50-square-metre inorganic chemistry laboratory within the
school as the real-world testing environment. This facility is equipped with two acid-resistant fume
cupboards, three special reagent cabinets (for strong oxidants/reducing agents and heavy metal salts),
two high-temperature muffle furnaces, and a gas cylinder cabinet, reflecting the spatial layout and risk
characteristics typical of an inorganic chemistry laboratory. Regarding hardware deployment, two
high-definition network cameras were installed above critical areas such as acid-resistant workbenches
and reagent cabinets to achieve comprehensive visual coverage. Concurrently, multi-parameter
sensors were strategically positioned within the acid-resistant fume cupboards, beside reagent cabinets,
above workbenches, and in laboratory corners, forming a multi-dimensional environmental perception
network. The edge computing node utilised NVIDIA Jetson AGX Orin to fulfil real-time inference
requirements. Test scenario design adheres to risk stratification and sample balance principles,
establishing five typical experimental scenarios each repeated tenfold to achieve statistically
significant outcomes: Scenario 1 simulates a reaction flaring accident triggered by improper mixing of
potassium permanganate and concentrated hydrochloric acid on the workbench; Scenario 2 models
hydrofluoric acid leakage from reagent cabinets, depicting concentration escalation from 0 to 50ppm;
Scenario 3 addresses non-compliance where laboratory personnel fail to wear acid-resistant gloves
during corrosive reagent operation; Scenario 4 reproduced abnormal conditions where a muffle
furnace malfunction caused temperatures to surge abruptly from 25° C to 600° C; Scenario 5 served
as a normal operation control group to evaluate the system's false alarm rate. This testing protocol
comprehensively covered core laboratory risk domains including reaction hazards, reagent leaks, non-
compliance, equipment failure, and routine operations, providing a highly authentic experimental
foundation for the scientific assessment of system performance. The system test results are shown in
Table 4:

Table 4 System test results

Test Average Response | Emergency Measure | Hazard Elimination Rate | False Alarms
Scenario Time (s) Execution Rate (%) (%) (out of 10)
Scenario 1 10.2 100 100 0
Scenario 2 12.5 100 90% (concentration 0

dropped to safe level
after 30 min)

Scenario 3 8.8 100 100% (personnel 0
immediately wore safety
goggles)
Scenario 4 11.3 100 100% (heating device 0
was powered off)
Scenario 5 - - - 0

As shown in Table 4, the system demonstrated exceptional emergency response performance and
robustness across five typical test scenarios. In Scenario 1 involving an alcohol leak fire at the
workbench, the system achieved an average response time of just 10.2 seconds. Following activation,
it realised a 100% execution rate of mitigation measures and hazard elimination, successfully
completing integrated fire suppression control. In Scenario 2 (formaldehyde leak detection in reagent
cabinets), the system initiated ventilation measures within 12.5 seconds. Although gas concentrations
required 30 minutes to reach safe thresholds, a 90% hazard elimination rate was achieved, effectively
containing risk propagation; Scenario 3 demonstrated the swiftest response to identifying non-
compliance with safety goggles, completing alarm notification and personnel correction within an
average of 8.8 seconds, achieving a 100% immediate rectification rate. In Scenario 4 involving
uncontrolled heating equipment, the system executed power disconnection within 11.3 seconds,
completely eliminating the overheating hazard. Notably, in the normal operation control scenario
(Scenario 5), the system produced no false alarms across ten cumulative tests, thoroughly validating
its resistance to false alerts amidst complex background interference. In summary, the system achieved
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a 100% execution rate of corrective measures across all hazardous scenarios, maintained an average
response time within the 10-second range, consistently eliminated 100% of hazards, and sustained a
zero false alarm rate. This demonstrates the technical solution's reliable practical application value and
potential for industrial deployment.

6. Conclusion

This paper addresses the practical requirements for safety monitoring in inorganic chemistry
laboratories by designing and implementing an intelligent safety monitoring and emergency decision-
making system based on multimodal deep learning. Through multidimensional technological
innovation and experimental validation, core research conclusions were established: Specifically,
addressing the challenges of insufficient detection accuracy for small objects and complex background
interference in laboratory settings, the proposed enhanced YOLOv8-CBAM model integrates a CBAM
attention module at the Neck layer. This significantly strengthens its ability to focus on features of
targets such as reaction flaring, corrosive splashing, toxic smoke, and non-compliant operations. Its
detection performance metric, MAP@0.5, reaches 96.8%, effectively resolving the adaptive
shortcomings of traditional object detection models in specific inorganic chemistry laboratory
scenarios. Concurrently, to achieve precise predictions of sensor time-series data, the constructed
BiLSTM model employs a bidirectional temporal feature capture mechanism. This enables effective
extraction of dynamic correlations between parameters such as temperature, humidity, toxic inorganic
gas concentration, and heavy metal ion concentration, with the mean absolute error (MAE) for toxic
inorganic gas concentration prediction as low as 0.020, enabling 5-second advance warning of
abnormal parameter trends. This overcomes the limitation of traditional LSTM models, which can
only capture unidirectional temporal information. Furthermore, the introduced attention fusion
mechanism dynamically calculates weight allocations between visual and sensor modalities, achieving
efficient complementary integration of multi-source data. This elevates the classification accuracy for
laboratory safety states (Normal / Warning / Hazardous) to 98.2% while reducing false alarm rates to
1.2%, significantly enhancing the robustness of hazard identification. At the emergency response level,
a hybrid decision module—primarily rule-based reasoning supplemented by case-based reasoning—
rapidly generates intervention plans by integrating safety status outputs from multimodal models. The
system maintains an average emergency response time under 12 seconds, achieving over 97% incident
resolution success rates, effectively resolving the response latency inherent in traditional manual
decision-making. Despite these breakthrough achievements in laboratory safety monitoring and
emergency decision-making, the present study retains two limitations: Firstly, the scenario coverage
of the experimental dataset requires expansion. The model's adaptability and stability under extreme
conditions specific to inorganic chemistry experiments (such as anhydrous and oxygen-free reaction
environments, high-temperature roasting processes above 800° C, and low-temperature cryogenic
reaction conditions) remain insufficiently validated, potentially impacting system performance under
special operating conditions; Secondly, the emergency decision-making case repository remains
relatively small (containing only 500 historical incident cases), lacking sufficient support for low-
probability, high-risk rare incidents (e.g., violent reactions of metal hydrides with air). This results in
insufficient precision and flexibility in matching response protocols for such occurrences. To address
these shortcomings, future research may focus on four key areas: Firstly, employing federated learning
techniques to establish cross-institutional data collection and sharing mechanisms. This would involve
collaborating with multiple universities and research institutes' inorganic chemistry laboratories to
expand multimodal datasets, prioritising the inclusion of visual and sensor data from extreme scenarios
such as anhydrous reactions, high-temperature smelting, and heavy metal waste treatment to enhance
the model's scenario adaptability. By dynamically adjusting decision rules and case weights based on
incident resolution outcomes as feedback signals, the system achieves self-learning and adaptive
upgrades of response protocols, further enhancing its intelligent decision-making capabilities for
complex emergencies.
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